Introducción
Muchas personas clasifican el desarrollo de la Programación Lineal (PL) entre los avances científicos más importantes de mediados del siglo XX. En la actualidad es una herramienta común que ha ahorrado miles o millones de dólares a muchas compañías y negocios, incluyendo industrias medianas en distintos países del mundo. ¿Cuál es la naturaleza de esta notable herramienta y qué tipo de problemas puede manejar? Expresado brevemente, el tipo más común de aplicación abarca el problema general de asignar recursos limitados entre actividades competitivas de la mejor manera posible (es decir, en forma óptima). Este problema de asignación puede surgir cuando deba elegirse el nivel de ciertas actividades que compiten por recursos escasos para realizarlas. La variedad de situaciones a las que se puede aplicar esta descripción es sin duda muy grande, y va desde la asignación de instalaciones productivas a los productos, hasta la asignación de los recursos nacionales a las necesidades de un país; desde la planeación agrícola, hasta el diseño de una terapia de radiación; etc. No obstante, el ingrediente común de todas estas situaciones es la necesidad de asignar recursos a las actividades.
Con frecuencia, seleccionar una alternativa incluye satisfacer varios criterios al mismo tiempo. Por ejemplo, cuando se compra una pieza de pan se tiene el criterio de frescura, tamaño, tipo (blanco, integral u otro), costo y rebanado o sin rebanar. Se puede ir un paso más adelante y dividir estos criterios en dos categorías: restricciones y el objetivo. Las restricciones son las condiciones que debe satisfacer una solución que está bajo consideración. Si más de una alternativa satisface todas las restricciones, el objetivo se usa para seleccionar entre todas las alternativas factibles. Cuando se elige una pieza de pan, pueden quererse 100 gr. de pan blanco rebanado y hecho no antes de ayer. Si varias marcas satisfacen estas restricciones, puede aplicarse el objetivo de un costo mínimo y escoger las más barata.
Existen muchos problemas administrativos que se ajustan a este molde de tratar de minimizar o maximizar un objetivo que está sujeto a una lista de restricciones. Un corredor de inversiones, por ejemplo, trata de maximizar el rendimiento sobre los fondos invertidos pero las posibles inversiones están restringidas por las leyes y las políticas bancarias. Un hospital debe planear que las comidas para los pacientes satisfagan ciertas restricciones sobre sabor, propiedades nutritivas, tipo y variedad, al mismo tiempo que se trata de minimizar el costo. Un fabricante, al planear la producción futura, busca un costo mínimo al mismo tiempo cómo cumplir restricciones sobre la demanda del producto, la capacidad de producción, los inventarios, el nivel de empleados y la tecnología. La PL se ha aplicado con éxito a estos y otros problemas.
La PL es una técnica determinista, no incluye probabilidades y utiliza un modelo matemático para describir el problema. El adjetivo lineal significa que todas las funciones matemáticas del modelo deben ser funciones lineales. En este caso, la palabra programación no se refiere a programación en computadoras; en esencia es un sinónimo de planeación. Así, la PL trata la planeación de las actividades para obtener un resultado óptimo, esto es, el resultado que mejor alcance la meta especificada (según el modelo) entre todas las opciones de solución. Aunque la asignación de recursos a las actividades es la aplicación más frecuente, la PL tiene muchas otras posibilidades. De hecho, cualquier problema cuyo modelo matemático se ajuste al formato general del modelo de PL es un problema de PL.
Forma estándar de los modelos de Programación Lineal
Supóngase que existe cualquier número (digamos m) de recursos limitados de cualquier tipo, que se pueden asignar entre cualquier número (digamos n) de actividades competitivas de cualquier clase. Etiquétense los recursos con números (1, 2, ..., m) al igual que las actividades (1, 2, ..., n). Sea xj (una
In v e s t i g a c i ó n d e O p e r a c i o n e s I n g . C h r i s t i a n B a r r a g á n . 1 0
variable de decisión) el nivel de la actividad j, para j = 1, 2, ..., n, y sea Z la medida de efectividad global seleccionada. Sea cj el incremento que resulta en Z por cada incremento unitario en xj (para j = 1, 2, ..., n). Ahora sea bi la cantidad disponible del recurso i (para i = 1, 2, ..., m). Por último defínase aij como la cantidad de recurso i que consume cada unidad de la actividad j (para i = 1, 2, ..., m y j = 1, 2, ..., n). Se puede formular el modelo matemático para el problema general de asignar recursos a actividades. En particular, este modelo consiste en elegir valores de x1, x2, ..., xn para:
Maximizar Z = c1x1 + c2x2 + ... + cnxn,
sujeto a las restricciones:
a11x1 + a12x2 + ... + a1nxn ≤ b1
a21x1 + a22x2 + ... + a2nxn ≤ b2
am1x1 + am2x2 + ... + amnxn ≤ bm
y
x1 ≥0, x2 ≥0, ..., xn ≥ 0
Ésta se llamará nuestra forma estándar (porque algunos libros de texto adoptan otras formas) para el problema de PL. Cualquier situación cuya formulación matemática se ajuste a este modelo es un problema de PL.
En este momento se puede resumir la terminología que usaremos para los modelos de PL. La función que se desea maximizar, c1x1 + c2x2 + ... + cnxn, se llama función objetivo. Por lo general, se hace referencia a las limitaciones como restricciones. Las primeras m restricciones (aquellas con una función del tipo ai1x1 + ai2x2 + ... + ainxn, que representa el consumo total del recurso i) reciben el nombre de restricciones funcionales. De manera parecida, las restricciones xj ³ 0 se llaman restricciones de no negatividad. Las variables xj son las variables de decisión. Las constantes de entrada, aij, bi, cj, reciben el nombre de parámetros del modelo.